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ABSTRACT

We show that a Krylov iterative method, preconditioned with DSA, can be used to efficiently compute
solutions to diffusive problems with discontinuities in material properties. We consider a lumped, linear
discontinuous discretization of the SN transport equation with a “partially consistent” DSA
preconditioner. The Krylov method can be implemented in terms of the original SN source iteration
coding with little modification. Results from numerical experiments show that replacing source
iteration with a preconditioned Krylov method can efficiently solve problems that are virtually
intractable with accelerated source iteration.

Key Words: Krylov iterative methods, discrete ordinates, deterministic transport methods, diffusion

synthetic acceleration

1 INTRODUCTION

A spatial discretization of the DSA diffusion equations that is consistent with the discretization of the
transport equation is usually considered a sufficient condition for a DSA method to be unconditionally
effective [1–3]. However, the degradation of DSA methods – even fully consistent ones – in problems with
discontinuities in material properties means that consistency is not enough to guarantee the effectiveness of
a DSA method. This was first identified in [4] and [5] and revealed as a general deficiency of DSA in a
paper at this conference.

For this paper, we follow on the work of Ashby, et al. [6], Brown [7], and Guthrie, et al. [8], where Krylov
methods preconditioned by DSA replace traditional source iteration on the scalar flux, and extend their
approach to our linear discontinuous finite element method (DFEM) on unstructured tetrahedral grids. This
discretization, including a discussion of compatible DSA methods, is presented in Sec. 2.

We find that using a more powerful iteration, like a Krylov subspace iterative method [9], significantly
improves convergence for problems in which the convergence of accelerated source iteration degraded in
the presence of material discontinuities. A nice feature is that the Krylov iterative method can be
“wrapped around” the source iteration code so that only minor changes to the original inner iteration
coding is necessary. A brief discussion of the formulation and implementation of the preconditioned
Krylov iterative solution method, including an overview of related work, is presented in Sec. 3
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We show numerical results for a realistic, unstructured mesh problem with a range of differing material
properties in Sec. 4. We find that (a) the Krylov method alone, without DSA preconditioning, accelerates
the transport solution, although not always as well as accelerated source iteration, (b) convergence is vastly
improved if the Krylov method is preconditioned with DSA, and (c) the Krylov method restores the
effectiveness of the partially consistent, but inexpensive, simplified WLA (S-WLA) DSA scheme [10, 11].
This last observation is also true for the fully consistent DSA method, but the high costs we encountered in
the fully consistent equations is unacceptable [12, 13], particularly costly in problems with material
discontinuities. Therefore we only consider the less costly S-WLA method for preconditioning the Krylov
method.

2 DISCONTINUOUS FINITE ELEMENT DISCRETIZATION ON TETRAHEDRAL MESHES

We present the linear discontinuous finite element method (DFEM) for the SN transport equation on
unstructured tetrahedral meshes, followed by a brief overview of DSA. Further details on the fully
consistent DSA scheme can be found in [13] and details of the partially consistent DSA method can be
found in [10] and [11].

2.1 Discontinuous Finite Element Discretization

The notation used here has the usual meaning [14] and we assume cgs units. Given an angular quadrature
set with N specified nodes and weights {Ω̂m, wm}, an isotropic distributed source of particles Q0(r) and
anisotropic scattering of order L, the monoenergetic, steady-state SN transport equation in the
three-dimensional domain r ∈ V with boundary rs ∈ ∂V , is

Ω̂m ·∇ψm(r) + σt(r)ψm(r) =
L∑

l=0

σs,l

l∑

n=−l

Yln(Ω̂m)φn
l (r) + Q0(r), m = 1, . . . , N. (1a)

Here, Yln(Ω̂) are the normalized spherical harmonics functions and the scalar flux moments are

φn
l (r) =

N∑

m=1

wmYln(Ω̂m)ψm(r). (1b)

The linear DFEM discretization is specified by the following variational formulation. Given an angular flux
expansion in terms of the four independent linear basis functions on a tetrahedral cell Tk,

ψm,k =
4∑

j=1

ψm,j,kLj(r), (2a)

find the linear approximation for each angle Ω̂m that satisfies

Ω̂m ·

( ∫

∂Tk

n̂ ψb
m uj dS −

∫

Tk

ψm,k∇uj dV

)
+ σtk

∫

Tk

ψm,k uj dV

=
L∑

l=0

σs,l,k

l∑

n=−l

Yln(Ω̂m)

∫

Tk

φl,k uj dV +

∫

Tk

Q0uk dV ,

(2b)
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φl,k =

N∑

m=1

wmYln(Ω̂m)ψm,k , (2c)

for all linear trial functions uj , j = 1, . . . , 4 on cell Tk. The Galerkin approximation takes the trial
functions to be the basis functions Lj , and the above expressions can be evaluated for each of these four
functions. This gives four equations for the four unknowns ψm,j,k on the cell. Before carrying out the
integrations in (2b), however, we first introduce the discontinuous approximation. Considering a cell k with
face p whose outward normal is n̂p, the boundary terms ψb

m are defined as

(
Ω̂m · n̂p

)
ψb

m =





(
Ω̂m · n̂p

)
ψm,i(p),k, Ω̂m · n̂p > 0, n̂p in V

(
Ω̂m · n̂p

)
ψm,i(p),l, Ω̂m · n̂p < 0, n̂p in V \∂V

(
Ω̂m · n̂p

)
Γ(Ω̂m), Ω̂m · n̂p < 0, n̂p on ∂V

(2d)

where l is the cell that shares face p with cell k. The subscript i(p) denotes three vertices i on a face p of a
given cell. Simply put, if n̂p is on the boundary of the problem domain V , then the boundary condition is
used to define the incoming angular flux for the three points on a face; otherwise the internal or external
values angular fluxes are used depending on the orientation of the cell face with respect to the quadrature
direction. The discrete boundary conditions are vacuum, Γ(Ω̂m) = 0, or Γ(Ω̂m) = ψm′,i(p),s for reflective
boundary conditions, where m′ is determined by the relationship

Ω̂m′ = Ω̂m − 2 n̂
(
Ω̂m · n̂

)
, (2e)

for Ω̂m and n̂ = n̂p. In our application, reflection is implemented only for boundary faces aligned parallel
to the x, y or z coordinate axes so that the standard quadrature sets we use contain the reflected angles Ω̂m′

that satisfy this relationship.

The integrals in (2) are evaluated, either analytically or by quadrature approximation, for every cell in the
mesh. The angular flux, ψm,j,k, can then be computed for all vertices j = 1, 4 of every cell k, one cell at a
time over the entire mesh in a predetermined order for every quadrature angle Ω̂m. Note that we use a fully
lumped version of (2). Describing it goes beyond the scope of this work, but suffice it to say that this
lumping preserves the diffusion limit in thick, diffusive regimes (see [15]).

2.2 Source Iteration in Operator Notation

In this section, we formulate the transport equation in an operator notation to facilitate our presentation.
We assume that we are using a standard SN angular discretization. Postponing discussion of the boundary
conditions, the discretized transport problem reads

Lψ = MSDψ + q. (3)

We use an N -point quadrature and there are Nc spatial cells in the problem. Let ψ be the vector of angular
fluxes for every angle and every vertex (four of them) in each cell, so ψ is of length n = 4NNc. The vector
q is source vector also of length n. The (n × n) operator L represents the discretized streaming and
removal operator for all angles. The vector φ contains the Nm (this number depends on L and the
particular quadrature) of scalar flux moments at the four vertices of each cell, so that is is of length
t = 4NmNc. The operator D maps the vector ψ onto φ, that is, φ = Dψ. The operator M maps a vector
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of scalar flux moments onto angular fluxes although it should be noted that ψ 6= Mφ. These are in general
rectangular operators, D being (t × n) and M is (n × t). In the standard SN scattering treatment
D = MT W , where W is an (n × n) diagonal operator of the quadrature weights distributed to all
vertices of all the cells. The operator S is a (t × t) diagonal operator of the scattering cross sections on the
cells, distributed to all vertices on all cells.

Rearranging (3) and introducing an iteration index `, we get traditional source (or Richardson) iteration:

ψ`+1 = L−1
(
MSφ` + q

)
(4a)

φ`+1 = Dψ`+1. (4b)

with the boundary conditions for ψ:

B0ψ = g on Γ0 (5a)

BRψ = 0 on ΓR. (5b)

The problem boundary Γ = Γ0 ∪ ΓR has been separated into Γ0, the part of the boundary with incoming
source or a vacuum conditions, and the remaining part, ΓR, the specular reflection part.

We first discuss the boundary conditions on Γ0, (5a) (see also [16]). Because the problem is linear, we first
initialize a source b by solving the problem

Lb = q, B0b = g, (6)

for b, whose physical interpretation is the uncollided flux. Then the iteration (4) can be computed
according to

ψ`+1 = L−1MSφ` + b, (7a)

φ`+1 = Dψ`+1, (7b)

Once the source b is calculated, homogeneous, or vacuum, boundary conditions are applied during the
iterations.

Reflection is implemented by modifying the operator L. We treat reflective conditions implicitly, so no
special angular SN sweep ordering is necessary. This greatly simplifies the implementation with no
significant extra computations since the solution is calculated iteratively anyway. We split the operator L

into two parts, L = L0 + LR, where the second part, LR, represents the coupling terms on the reflective
boundary faces based on (2e). All other spatial and angular coupling terms remain in the first part, L0. This
enables us to “lag” the angular fluxes on the reflective boundary faces and the iteration (7) is modified to be

ψ`+1 = L−1
0

(
MSφ` − LRψ`

)
+ b, (8a)

φ`+1 = Dψ`+1. (8b)

where b is again computed by solving (6). Let the vector ψR consist only of the angular fluxes on the points
of reflective boundary faces. The operator P maps ψR into the full length vector representation ψ. The
vector ψR is of length v = NR · N , where NR is the total number of spatial points on the reflective
boundary faces of the problem, so that P is a (n × v) operator. This enables us to use φ as the primary

American Nuclear Society Topical Meeting in Mathematics & Computations, Gatlinburg, TN, 2003 4/19



Krylov Methods for SN Calculations with Material Discontinuities

working vector and save only the vector ψR for subsequent iterations. A complete description, then, in
operator notation describing precisely how source iteration is implemented in our transport code is

ψ`+1 = L−1
0

(
MSφ` − LRPψ`

R

)
+ b, (9a)

φ`+1 = Dψ`+1. (9b)

2.3 DSA Methods

We briefly review the DSA method to put it in context. We ignore reflective boundary conditions for
purposes of discussion because we can write the iteration for the scalar flux

φ`+1 = TSφ` + b (10)

where T = DL−1M and b = DL−1q. If φ is the exact solution to (10) then the error f `+1 = (φ − φ`+1)
satisfies

(I − TS)f `+1 = TSr`, (11)

where r` = (φ`+1 − φ`) is the residual and I is the (t× t) identity operator. Equation (11) suggests that we
can use an approximation to the operator (I − TS)−1TS to estimate the error and correct the current
iterate. This leads to a more efficient iteration if the approximate operator is relatively easy to setup and
invert and if the approximate operator adequately reduces the spectral radius.

In the case of DSA, the approximate operator involves the diffusion operator, C. This is an appropriate
choice because the diffusion equation is the asymptotic limit of the transport operator in highly diffusive
regimes [17, 18]. This is just the situation for which we need acceleration. The diffusion operator is
effective because it can represent the errors that are poorly attenuated by source iteration and which can be
seen to be nearly diffusive [2]. Whether the diffusion operator can be inverted easily and result in a more
efficient algorithm depends on the spatial discretization of both the transport equation and the diffusion
equation. Introducing an intermediate correction step in the source iteration algorithm, the DSA algorithm
is

φ`+1/2 = Tφ` + b (12a)

f `+1/2 = ES
(
φ`+1/2 − φ`

)
(12b)

φ`+1 = φ`+1/2 + f `+1/2. (12c)

The operator E represents the inverse of the diffusion equation, which we write as C−1. It may also
include projection or interpolation operators, P and R, respectively, that may be required by the particular
spatial discretization, or E = RC−1P . It is the properties of all the computations represented by the E

operator that determines how effective, efficient and robust the overall DSA algorithm will be in practice.
Note that additional operations are necessary to treat reflective boundary conditions. For our purposes here,
we consider only the partially consistent scheme, the S-WLA method [10, 13]. A method that is fully
consistent with our DFEM spatial discretization is simply too costly to be used in general implementations,
especially considering the way its effectiveness is degraded in problems with discontinuous material
properties.
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3 KRYLOV SUBSPACE ITERATIVE METHODS

We now describe the implementation of the Krylov iterative methods, starting from the source iteration that
is already implemented in our transport code. The previous work with Krylov iterative methods for
transport applications that we find most relevant is briefly reviewed.

3.1 Reformulating Source Iteration

Source iteration is better known mathematically as a stationary, one-step Richardson iteration or as a
fixed-point iteration for the scalar flux. It is the simplest possible iteration. We wish to replace source
iteration with another, more powerful, iteration, like a Krylov subspace iterative method. To do so, first we
write source iteration in a form that we can use with another iterative method.

We postpone discussion of reflective boundary conditions. We start with (7) and assume that we have
already calculated the source term b as previously discussed. Eliminating iteration indices and collapsing
the iteration into a single expression for the scalar flux moments gives

(
It − DL−1MS

)
φ = Db, (13)

where Ik is a (k × k) identity operator.

We now account for reflective boundary conditions, working with the operators L−1
O and LR to minimize

additions and changes to a code for which source iteration has already been implemented and verified. So,
we augment the working vector φ with the vector of angular fluxes on the boundary, ψR:

φ̃ =

[
φ

ψR

]
. (14)

The source term is similarly augmented, b̃ = [Db 0]T . We again collapse the iteration in (8) into a single
expression by writing it in the augmented form

φ̃`+1 =

[
D 0
0 Iv

][
In

P T

]
L−1

0 [In (−LRP )]

[
M 0
0 Iv

][
S 0
0 Iv

]
φ̃` + b̃. (15)

We can eliminate the iteration index and bring things from the right to the left hand side to find an
expression in the same form as (13):

(
Ĩ − D̃L̃−1M̃S̃

)
φ̃ = b̃ (16a)

where

L̃−1 =

[
In

P T

]
L−1

0 [In (−LRP )], and Ĩ =

[
It 0
0 Iv

]
. (16b)

Correspondence of the remaining operators with the previous augmented form can be deduced easily by
comparison.

It is as simple as that. Existing coding is used to compute the action of the D, M , S and L−1
0 operators at

every Krylov iteration. Note that a more powerful iterative method has to utilize, or at least make better use
of, information that is available from one or more previous iterates. Some additional storage and
computational overhead is needed to implement an advanced iterative strategy. The expectation is that any
extra costs are outweighed by an improvement in the iterative convergence rate.
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3.2 Preconditioning with DSA

We show that the DSA algorithm is equivalent to a preconditioning the transport operator as follows. See
[19] for a related discussion. First, consider that Richardson iteration for some linear system Ax = y is
simply

x`+1 = x` + r` = x` +
(
y − Ax`

)
= (I − A) x` + y. (17)

Comparing this with (10), we find the operator corresponding to source iteration is A = (I − TS).
Richardson iteration for the (left) preconditioned linear system M−1Ax = M−1y is

x`+1 = x` + M−1r` = x` + M−1
(
y − Ax`

)
=

(
I − M−1A

)
x` + M−1y. (18)

Recall that preconditioning is effective if M−1 is in some sense an approximation to A−1. The
preconditioner may be computed explicitly in advance or it may involve the solution of another linear
system, Mw = z, for example, which might need to be computed iteratively or approximately at every
iteration. The overall solution can be computed more efficiently only if the preconditioning system can be
computed relatively easily.

Collapsing the DSA algorithm (12) into a single operation gives

φ`+1 = TSφ` + b + E−1S
(
TSφ` + b − φ`

)

=
[
I +

(
I + E−1S

)
(TS − I)

]
φ` +

(
I + E−1S

)
b

(19)

which, by comparison with (18) shows that the DSA algorithm is just Richardson iteration for the
preconditioned system (

I + E−1S
)
(I − TS)φ =

(
I + E−1S

)
b. (20)

We can see that
(
I + E−1S

)
is in fact an approximation to the inverse of (I − TS) as follows. The

computation of the error estimate in (12), f `+1/2 = E−1S
(
φ`+1/2 − φ`

)
, is an approximation to the error

equation
(I − TS)f `+1/2 = TSr`, (21)

where f `+1/2 = (φ − φ`+1/2), r` = (φ`+1/2 − φ`), and φ is the exact solution to (10). Examining (12) it is
evident that

E−1S ≈ (I − TS)−1 TS = (I − TS)−1 − I, (22)

or, in other words, (
I + E−1S

)
≈ (I − TS)−1 . (23)

3.3 Previous Work

There has been a fair amount of work during the past decade in applying Krylov methods to transport
problems in various contexts (see [20–29]. For a definition and description of Krylov subspace and other
iterative methods, see [9].

The ideas most influential on the work we are presenting here those of Ashby, et al., [6, 16], Brown [7], and
Guthrie, et al. [8]. These papers show similar numerical results and make similar conclusions regarding the
effectiveness and efficiency of GMRES preconditioned with DSA. Ashby, et al.[16], and Brown [7], put
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emphasis on the analysis of DSA as a preconditioner and the linear algebraic formalism that facilitates their
analysis. Guthrie, et al. [8] focused primarily on how to implement the iterative solution in terms of
transport sweeps and give an enlightening discussion on the optimality of GMRES.

In [6], the authors considered an inconsistent DSA scheme for linear discontinuous discretizations in one
dimension, whose effectiveness degraded in the presence of two very different materials, unlike the
consistent method to which it was compared [6]. While this DSA method was totally ineffective in
accelerating source iteration, convergence improved significantly when it was applied as a preconditioner
to GMRES. Their work actually presaged the situation in which we now find ourselves. They state in their
conclusion, “These results have possible implications for problems in higher spatial dimensions, for which
a consistent preconditioner is difficult to obtain and/or impractical to apply” [6]. Furthermore, Brown
points out in his work on DSA for diamond-difference methods in 3D orthogonal grids that if the diffusion
equation in the DSA algorithm is not solved exactly or some other approximations are made, “. . . the use of
these methods in three dimensions will be crucial to the overall usefulness of DSA in 3-D problems,”
referring to “. . . more powerful iterative methods such as Bi-CGSTAB . . . ” [7]. Indeed, this is the case for
our linear DFEM SN transport discretization. The FCDSA algorithm is prohibitively expensive to employ
and only the partially consistent S-WLA DSA method remains feasible for general purpose. This is
because when used as a preconditioner to a Krylov iterative method, it remains effective even in the
presence of material discontinuities. The overall solution can be computed efficiently because the S-WLA
method is inexpensive, precisely because of the approximations made that make it only partially consistent.

3.4 Implementation and Convergence of Krylov Subspace Iterative Methods

We now make some brief remarks on the choice of Krylov iterative method, convergence of the Krylov
methods, and the implementation of the Krylov method in the transport code AttilaV2, indicating how the
structure and properties of the transport operator I − TS influences these issues.

3.4.1 Choosing a Krylov iterative method.

The obvious iterative method to choose when an operator is s.p.d. (symmetric, positive definite) is the
method of conjugate gradients (CG). Symmetrization of the scalar flux formulation is possible, in the sense
that it is possible to define an inner product for which the operator is symmetric [24, 28]. This is all that is
needed for isotropic scattering. The operator in (13) or (16) is a discrete form of integral equation for the
vector of scalar flux moments. By examining the continuous form of the integral equation for anisotropic
scattering, Santandrea and Sanchez very cleverly define an inner product and preconditioner that makes the
preconditioned operator s.p.d. [24].

This implies that we might use CG as an iterative solution technique, provided the spatial discretization
does not induce a nonsymmetric operator. We found that our LDFEM discretization on tetrahedra does in
fact makes the scalar flux formulation nonsymmetric, even for isotropic scattering with constant material
properties. Furthermore, two potential DSA schemes that are compatible with that discretization, the fully
consistent, discontinuous diffusion discretization, and the partially consistent, S-WLA method, are either
nonsymmetric, or symmetric and indefinite. So, we cannot guarantee that (preconditioned) CG will
converge under these circumstances and we have use a nonsymmetric Krylov iteration like GMRES.

American Nuclear Society Topical Meeting in Mathematics & Computations, Gatlinburg, TN, 2003 8/19



Krylov Methods for SN Calculations with Material Discontinuities

3.4.2 A few words about convergence.

To limit memory use, we use the restarted version of GMRES, GMRES(m), which restarts the iteration
every m iterations. We have found that the transport operator, while nonsymmetric, is positive definite, in
which case restarted GMRES is guaranteed to converge [9, 27].

We have also found that our operator is non-normal as well as being nonsymmetric. This can complicate
the prediction and analysis of convergence [27, 30]. The convergence behavior of simple iterative methods
like Richardson iteration or Krylov iterative methods for symmetric systems is well-understood in terms of
the eigenvalues of the linear system. In contrast, there is very little that can be done to accurately predict or
estimate the convergence of nonsymmetric Krylov iterative methods, except under special circumstances.
Even if available, the estimated bounds may not be sharp. We do not consider this lack of a priori
knowledge about convergence to be restrictive because our experience so far indicates that the
nonsymmetric Krylov methods GMRES and BiCGStab, for example, are very robust for this application.

We can, however, make a few statements about convergence. In exact arithmetic, GMRES will converge in
a number of iterations less than or equal to the degree of the minimal polynomial of A, denoted d(A),
except for some very special cases. The minimal polynomial is the unique monic polynomial that satisfies
pd(A) = 0 of lowest degree. It can be seen that such a polynomial will, generally speaking, have low
degree if the eigenvalues of A are non-defective and of high multiplicity. The Krylov subspace from which
the solution at iteration p, xp, is chosen is Km(A, r0) = span{r0, Ar0, A

2r0, . . .A
m−1r0}. Obviously, the

maximum dimension that the Krylov subspace can attain is the degree of the minimal polynomial. When
m = d(A) the Arnoldi process, which computes an orthogonal basis for Km(A, r0) halts and GMRES
suffers what is called a “lucky breakdown”, “lucky” because the solution has converged at that point [9]. In
finite precision arithmetic, however, the eigenvalues are perturbed such that they form small clusters of
distinct eigenvalues about the exact values and the degree of the minimal polynomial will be larger than it
would be otherwise. Nonetheless, GMRES still has the opportunity to converge quickly if the eigenvalues
make up a small number of small clusters. This is often observed in practice [30].

Now, if the matrix A is normal (A has a complete orthonormal eigendecomposition A = Q∗
ΛQ or,

equivalently, AAT = AT A) then its spectrum will be insensitive to perturbations, or well-conditioned,
and the effects of finite precision arithmetic should be nominal. In that case, GMRES should converge in
approximately d(A) iterations. Non-normality does not imply that the spectrum of A is ill-conditioned,
although an operator whose spectrum is ill-conditioned has to be non-normal. If GMRES is applied to a
non-normal matrix and it converges in the number of iterations predicted by d(A), then everything is as it
should be, and the spectrum is probably well-conditioned. However, when GMRES does not converge in
the predicted number of iterations when the matrix is non-normal, then it might be that the spectrum is
ill-conditioned.

We have attempted to explore the properties of the transport operator by explicitly constructing I − TS for
some simple, homogeneous problems, including anisotropic scattering, on a few very small meshes.
Having found the operator is non-normal, GMRES still converged within one or two iterations of the
degree of the minimal polynomial, which was typically quite small, on the order of 10-15. This indicates
that the eigenvalues are well-conditioned and GMRES has the opportunity to converge quickly.

A number of recent texts provide further information on the theoretical background behind Krylov iterative
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methods; see [9, 27], for example.

3.4.3 Applying DSA as a preconditioner.

The preconditioned linear system, in the form given in (20), is what we solve with a Krylov iterative
method. Assume for the moment that we are solving the preconditioned linear system M−1Ax = M−1y.
At every iteration, the Krylov method supplies a vector v to which the linear system is applied, that is, the
vector z = Av is computed and returned to the Krylov solver. Subsequently, the linear system Mw = z is
“solved” and the vector w is returned to the solver. This allows us to compute the “action” of the
preconditioner on the vector z without the inverse matrix M−1 being available.

However, we do not actually use the preconditioned version of the Krylov algorithm where we would have
to first apply the linear system to v, z = (I − TS)v, and subsequently compute the action of the
preconditioner on z, w = (I + E−1S)z, as we would if DSA were being used as a preconditioner. Instead,
we use the unpreconditioned version of the Krylov method. At every iteration we set φ` = v, compute the
sequence of operations shown in the DSA algorithm, Eqs. 12, with the original source iteration code. We
then return w = v − φ`+1 to the Krylov solver. Collapsing the solution process into a single operation
shows that this approach is fully equivalent to preconditioning in the usual sense but requires much less
code modification because the Krylov solver can just be “wrapped around” the source iteration code with
just the addition of the last step w = v − φ`+1.

3.4.4 Inner-outer iterations.

The S-WLA DSA equations involve solving an s.p.d. linear system (the linear continuous finite element
discretization of the diffusion equation) with conjugate gradients (CG). We would like to save
computational effort in the combined inner-outer iteration by varying the tolerance of the inner iteration,
which in this case is the CG iteration, without affecting the accuracy or convergence of the outer iteration,
which in this case is a Krylov subspace method. Recently, it was observed in [31] that the inner iterations
need to be computed to a strict convergence tolerance in the early part of the outer Krylov iterations. The
tolerance can then be relaxed as the outer iteration proceeds. We set the inner tolerance in inverse
proportion to the norm of the outer residual vector in accordance with [31]. This approach has recently
been understood and justified theoretically [32]. If restarting, however, the inner solution should again be
computed with high precision and the tolerance subsequently relaxed. The inner tolerance for the DSA CG
solution at outer iteration k, with residual rk, is set according to

γ =

{
1
10ε if k mod m = 0
1
10 max(ε, min(1, ε/min(‖rk‖2, 1))) otherwise

where ε is the tolerance for the outer iteration. We have found the factor of 1/10 to be conservative in that
this choice did not affect convergence or accuracy in any of the problems we have tried.

4 NUMERICAL RESULTS

In this section we compare the Krylov iterations to source (Richardson) iterations, with and without
preconditioning using the partially consistent S-WLA DSA method. The results are computed using
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AttilaV2 [33] for a realistic, two-material “duct” problem. They illustrate both how computational effort
depends on scattering ratio and the total cross section in the two regions in the problem.

We found through experimentation on a wide variety of problems that the reasonably-sized restart
parameter of m = 10 did not reduce the outer convergence rate compared to higher values. There was
some slight sensitivity for values smaller than this.

We refer to traditional source iteration as “SI”, and to source iteration accelerated by the S-WLA DSA
method as “ASI”.

We refer to the Krylov method without preconditioning as, “GMRES”, and to the Krylov method
preconditioned with the S-WLA algorithm as, “PGMRES”. In both cases, GMRES(10) is the Krylov
method used.

The following stopping criterion is used in all results presented here:

‖φ`+1 − φ`‖2

‖φ`+1‖2
≤ 10−5, (24)

or 2000 iterations. The CG convergence tolerance for the DSA method is fixed to 10−6 only for the source
iteration solutions. The strategy discussed in Sec. 3.4 is used for the PGMRES results. Initial scalar fluxes
are zero and we use a triangular, S4 Chebyshev-Legendre quadrature.

The problem consists of a reflected quarter-cylinder, 25 cm in radius and 50 cm long. The “thin” duct
region is 5 cm in radius. It is surrounded by a “thick” region and bends around a central disc of thick
material. There is a unit isotropic boundary source incident on the left face of the duct. Vacuum boundary
conditions are specified the outer surfaces. The values of the total cross sections in the thin region, σt,1, and
the thick region, σt,2, as well as the scattering ratio c, are varied to examine the effect of material
heterogeneities in a realistic problem. An isotropic source of strength 1.0−6 particles/cm3 is distributed
throughout the problem to help smooth the solution. The unstructured, tetrahedral mesh is illustrated in
Figs. 1. It consists of 31,481 cells.

The number of iterations and the measured number of floating point operations (FLOP) on a single SGI
Origin 2000 250 MHz CPU are tabulated below. The results for ASI and PGMRES on the Tet Mesh are
shown in Tables I and II. These results may be compared to the results for SI and GMRES (no DSA
acceleration or preconditioning) on the Tet Mesh shown in Tables III and IV. Each table contains data for
both solution methods for various values of thin (σt,1) and thick (σt,2) region cross sections and scattering
ratios c = 1.0000, 0.9999, 0.999, 0.99, 0.9.

The most apparent and important observation is that PGMRES significantly reduces the number of
iterations needed for convergence compared to ASI. This improvement in iteration count offsets any extra
computational effort. The savings in compuational effort compares more favorably as the scattering ratio c
approaches 1.0 and S-WLA becomes less effective. While PGMRES needs less computational effort even
for the lowest value of c = 0.9 considered here, there is most likely going to be a point at which c is small
enough that ASI, will compute a solution with less effort because of its lower per iteration cost. However,
as c approaches zero DSA is not really needed anyway and unaccelerated source iteration is perfectly
adequate. It is notable that the results that GMRES alone, without the S-WLA preconditioner, does in fact
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Figure 1. The unstructured, tetrahedral mesh used for the numerical computations. The total cross section
in the lightly-shaded, “thin” duct region is σt,2 and σt,1 in the darker, “thick” surrounding region.

accelerate the transport iterations. In some cases it performs as well as DSA-accelerated source iteration,
although we cannot conclude that this will be true in general. The results reported here are encouraging,
especially since PGMRES outperforms source iteration when material discontinuities are not present.

Finally, as shown in Table V the additional memory required for GMRES(10) is not unreasonable, only
about 50% greater than what is needed for the source iteration implementation.

5 CONCLUSIONS

A Krylov subspace iterative method can significantly improve the efficiency of SN transport calculations in
problems for which source iteration accelerated with DSA schemes will be ineffective. Such problems have
discontinuities in material properties that render even fully consistent methods ineffective. Most
importantly, our results show that a partially consistent DSA method like the S-WLA method can be used
as an efficient preconditioner for a Krylov iterative method, despite being ineffective as an acceleration
scheme for traditional source iteration. The rate of convergence is substantially faster when the Krylov
iteration is preconditioned with the S-WLA DSA method, relative to either source iteration accelerated
with S-WLA, or GMRES without preconditioning.

Computational measurements indicate that the extra computational and storage overhead associated with
the GMRES Krylov iterative method is acceptable given that these problems may not even converge in a
reasonable amount of time using accelerated source iteration.

Although we only considered steady-state, one-group problems with isotropic scattering, we successfully
tested this approach on problems with anisotropic scattering and on multigroup, criticality eigenvalue
problems. We found that preconditioned Krylov methods outperformed accelerated source iteration in
almost all the problems we tested. We feel that Krylov iterative methods are well-suited for calculating
within-group solutions in transport codes that are intended for general purpose use.
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Table I. Computational results for the Tet Mesh. Number of iterations are tabulated for total cross sections
σt,1 and σt,2 (cm−1) and a range of scattering ratio c.

σt,2

103 102 101 100

σt,1 c PGMRES ASI PGMRES ASI PGMRES ASI PGMRES ASI

10−3

1.0000
0.9999
0.999
0.99
0.9

45
43
25
10
4

618
513
222
41
9

36
34
30
19
8

403
378
291
136
28

14
14
14
13
8

71
71
69
56
28

5
5
5
5
5

14
14
14
14
12

10−2

1.0000
0.9999
0.999
0.99
0.9

36
31
19
9
4

379
305
121
34
8

29
28
24
16
7

267
251
193
85
23

13
13
13
12
8

59
58
57
46
23

5
5
5
5
5

13
13
12
12
11

10−1

1.0000
0.9999
0.999
0.99
0.9

19
19
17
9
4

112
106
83
29
8

17
17
15
13
7

86
81
67
53
19

9
9
9
8
6

27
27
26
23
17

4
4
4
4
4

9
9
9
9
8

100

1.0000
0.9999
0.999
0.99
0.9

14
15
14
9
5

58
66
59
25
10

11
11
12
10
6

37
38
39
34
16

6
6
6
6
5

14
14
14
14
12

4
4
4
4
4

8
8
8
8
7

101

1.0000
0.9999
0.999
0.99
0.9

11
10
10
8
6

30
36
37
24
15

9
9
9
9
7

26
27
30
27
16

6
6
6
6
6

13
13
13
13
12

102

1.0000
0.9999
0.999
0.99
0.9

11
13
13
11
7

35
43
48
37
18

11
11
11
10
7

34
34
34
31
18

103

1.0000
0.9999
0.999
0.99
0.9

21
13
12
9
4

49
50
44
28
10
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Table II. Computational results for the Tet Mesh. FLOP counts (in billions) are tabulated for total cross
sections σt,1 and σt,2 (cm−1) and a range of scattering ratio c.

σt,2

103 102 101 100

σt,1 c PGMRES ASI PGMRES ASI PGMRES ASI PGMRES ASI

10−3

1.0000
0.9999
0.999
0.99
0.9

8.17
7.86
4.75
2.14
1.18

90.05
74.31
32.06
5.92
1.35

6.54
6.24
5.48
3.60
1.74

58.79
55.11
42.18
19.66
4.07

2.94
2.94
2.94
2.75
1.84

10.43
10.43
10.15
8.23
4.12

1.30
1.30
1.30
1.30
1.29

2.13
2.13
2.13
2.13
1.84

10−2

1.0000
0.9999
0.999
0.99
0.9

6.46
5.69
3.57
1.87
1.05

54.70
43.79
17.33
4.87
1.17

5.27
5.11
4.47
3.09
1.56

38.51
36.12
27.71
12.19
3.32

2.66
2.66
2.65
2.51
1.73

8.57
8.43
8.28
6.68
3.35

1.28
1.28
1.28
1.27
1.27

1.96
1.96
1.81
1.81
1.66

10−1

1.0000
0.9999
0.999
0.99
0.9

3.62
3.61
3.27
1.86
1.05

16.01
15.10
11.73
3.96
1.06

3.23
3.22
2.90
2.59
1.48

12.29
11.58
9.56
7.51
2.63

1.95
1.95
1.95
1.79
1.46

3.89
3.89
3.75
3.32
2.44

1.07
1.07
1.07
1.07
1.07

1.32
1.32
1.32
1.32
1.18

100

1.0000
0.9999
0.999
0.99
0.9

2.70
2.79
2.59
1.64
1.06

8.15
9.11
7.82
3.09
1.25

2.25
2.26
2.37
1.89
1.23

5.19
5.31
5.35
4.54
2.00

1.34
1.34
1.33
1.32
1.14

1.96
1.96
1.96
1.94
1.61

1.02
1.02
1.02
1.02
1.01

1.12
1.12
1.12
1.12
0.99

101

1.0000
0.9999
0.999
0.99
0.9

2.54
1.93
1.85
1.53
1.25

4.11
4.70
4.51
2.87
1.79

1.72
1.70
1.67
1.60
1.30

3.50
3.60
3.87
3.28
1.91

1.35
1.35
1.34
1.31
1.26

1.73
1.73
1.72
1.67
1.46

102

1.0000
0.9999
0.999
0.99
0.9

2.24
2.21
2.17
1.90
1.27

4.65
5.14
5.55
4.20
2.07

2.04
1.99
1.94
1.68
1.27

4.34
4.17
3.97
3.54
2.07

103

1.0000
0.9999
0.999
0.99
0.9

4.48
2.22
2.09
1.61
0.98

6.07
5.65
4.94
3.17
1.18
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Table III. Computational results for the Tet Mesh without S–WLA preconditioning or acceleration. Number
of iterations are tabulated for total cross sections σt,1 and σt,2 (cm−1) and a range of scattering ratio c. An
entry “n/c” indicates that the problem did not converge in 2000 iterations.

σt,2

103 102 101 100

σt,1 c GMRES SI GMRES SI GMRES SI GMRES SI

10−3

1.0000
0.9999
0.999
0.99
0.9

112
88
33
12
4

n/c
n/c
n/c
486
59

350
316
85
30
10

n/c
n/c
n/c
441
67

43
42
41
28
12

606
601
553
310
60

8
8
8
8
7

28
28
28
27
22

10−2

1.0000
0.9999
0.999
0.99
0.9

325
108
42
13
5

n/c
n/c
n/c
486
59

319
213
92
33
10

n/c
n/c
n/c
441
67

46
46
44
29
13

607
601
553
310
60

8
8
8
8
7

28
28
28
27
22

10−1

1.0000
0.9999
0.999
0.99
0.9

156
93
50
18
6

n/c
n/c
n/c
485
59

322
269
116
35
12

n/c
n/c
n/c
441
67

45
44
42
29
13

609
603
555
311
60

8
8
8
8
7

28
28
28
27
22

100

1.0000
0.9999
0.999
0.99
0.9

1133
320
73
26
9

n/c
n/c
n/c
477
59

393
291
128
39
14

n/c
n/c
n/c
441
66

50
50
47
33
14

635
628
575
313
60

10
10
10
9
8

35
35
35
34
25

101

1.0000
0.9999
0.999
0.99
0.9

920
401
99
37
14

n/c
n/c
n/c
439
57

660
392
170
45
16

n/c
n/c
n/c
439
65

57
57
52
33
14

850
835
720
319
61

102

1.0000
0.9999
0.999
0.99
0.9

n/c
549
136
37
12

n/c
n/c
n/c
441
68

769
363
131
37
11

n/c
n/c
n/c
452
68

103

1.0000
0.9999
0.999
0.99
0.9

146
49
25
11
5

n/c
n/c

1776
511
81
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Table IV. Computational results for the Tet Mesh without S–WLA preconditioning or acceleration. FLOP
counts (in billions) are tabulated for total cross sections σt,1 and σt,2 (cm−1) and a range of scattering ratio
c. An entry “n/c” indicates that the problem did not converge in 2000 iterations.

σt,2

103 102 101 100

σt,1 c GMRES SI GMRES SI GMRES SI GMRES SI

10−3

1.0000
0.9999
0.999
0.99
0.9

14.73
11.60
4.65
1.98
0.93

n/c
n/c
n/c

50.74
6.23

44.43
40.14
11.04
4.09
1.57

n/c
n/c
n/c

46.05
7.07

5.94
5.83
5.71
3.98
1.99

63.25
62.72
57.72
32.39
6.34

1.32
1.32
1.32
1.32
1.20

3.00
3.00
3.00
2.90
2.38

10−2

1.0000
0.9999
0.999
0.99
0.9

41.20
13.90
5.66
1.99
0.96

n/c
n/c
n/c

50.74
6.23

40.33
27.09
11.93
4.50
1.56

n/c
n/c
n/c

46.05
7.07

6.15
6.15
5.91
3.98
2.01

63.35
62.72
57.72
32.39
6.34

1.32
1.32
1.32
1.32
1.20

3.00
3.00
3.00
2.90
2.38

10−1

1.0000
0.9999
0.999
0.99
0.9

20.21
12.27
6.77
2.69
1.17

n/c
n/c
n/c

50.63
6.23

40.75
34.04
14.87
4.72
1.89

n/c
n/c
n/c

46.05
7.07

6.18
6.06
5.83
4.10
2.11

63.56
62.93
57.93
32.50
6.34

1.32
1.32
1.32
1.32
1.20

3.00
3.00
3.00
2.90
2.38

100

1.0000
0.9999
0.999
0.99
0.9

142.68
40.51
9.54
3.59
1.43

n/c
n/c
n/c

49.80
6.23

49.88
37.05
16.41
5.22
2.11

n/c
n/c
n/c

46.05
6.96

6.63
6.63
6.27
4.54
2.12

66.27
65.54
60.01
32.71
6.34

1.57
1.57
1.57
1.45
1.32

3.73
3.73
3.73
3.63
2.69

101

1.0000
0.9999
0.999
0.99
0.9

118.08
51.70
13.05
5.13
2.22

n/c
n/c
n/c

45.84
6.02

83.66
49.88
21.78
6.03
2.35

n/c
n/c
n/c

45.84
6.86

7.70
7.70
7.11
4.66
2.22

88.68
87.11
75.13
33.33
6.44

102

1.0000
0.9999
0.999
0.99
0.9

252.58
69.78
17.47
4.99
1.89

n/c
n/c
n/c

46.05
7.17

97.31
46.15
16.93
5.00
1.78

n/c
n/c
n/c

47.19
7.17

103

1.0000
0.9999
0.999
0.99
0.9

19.14
6.68
3.61
1.87
1.05

n/c
n/c

185.19
53.34
8.53
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Table V. Approximate memory requirements (MB) measured on a dedicated SGI Origin 2000 single pro-
cessor.

PGMRES GMRES ASI SI

276 246 181 178

Our conclusions could change if we consider a parallel implementation. However, as long as the SN sweep
algorithms can be implemented efficiently then there should be no reason why we would not see similar
performance in parallel applications.
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